

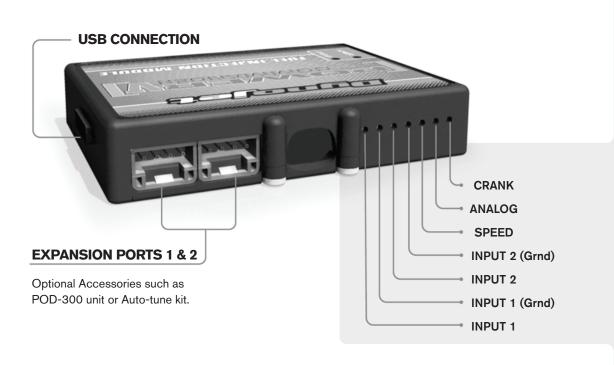
2006-2011 Yamaha MT-03

Installation Instructions

PARTS LIST

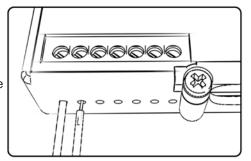
- 1 Power Commander
- 1 USB Cable
- 1 Installation Guide
- 2 Power Commander Decals
- 2 Dynojet Decals
- 2 Velcro strips
- 1 Alcohol swab
- 1 O2 Optimizer

THE IGNITION MUST BE TURNED OFF BEFORE INSTALLATION!


THE LATEST POWER COMMANDER
SOFTWARE AND MAP FILES CAN BE
DOWNLOADED FROM OUR WEB SITE AT:
www.powercommander.com

PLEASE READ ALL DIRECTIONS BEFORE STARTING INSTALLATION

2191 Mendenhall Drive North Las Vegas, NV 89081 (800) 992-4993 www.powercommander.com


POWER COMMANDER V INPUT ACCESSORY GUIDE

Wire connections:

To input wires into the PCV first remove the rubber plug on the backside of the unit and loosen the screw for the corresponding input. Using a 22-24 gauge wire strip about 10mm from its end. Push the wire into the hole of the PCV until is stops and then tighten the screw. Make sure to reinstall the rubber plug.

NOTE: If you tin the wires with solder it will make inserting them easier.

ACCESSORY INPUTS

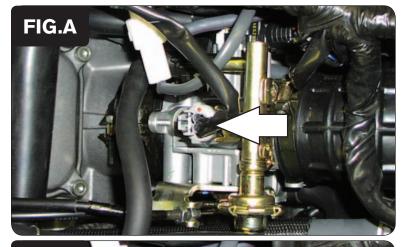
Map -

(Input 1 or 2) The PCV has the ability to hold 2 different base maps. You can switch on the fly between these two base maps when you hook up a switch to the MAP inputs. You can use any open/close type switch. The polarity of the wires is not important. When using the Autotune kit one position will hold a base map and the other position will let you activate the learning mode. When the switch is "CLOSED" Autotune will be activated. (Set to Switch Input #1 by default.)

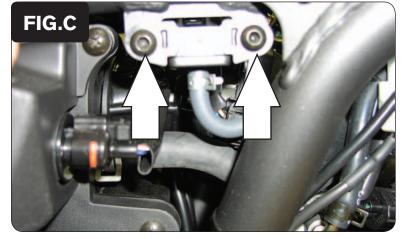
Shifter-

(Input 1 or 2) These inputs are for use with the Dynojet quickshifter. Insert the wires from the Dynojet quickshifter into the SHIFTER inputs. The polarity of the wires is not important. (Set to Switch Input #2 by default.)

Speed-

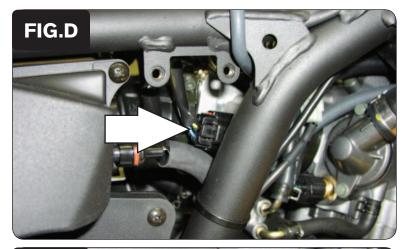

If your application has a speed sensor then you can tap into the signal side of the sensor and run a wire into this input. This will allow you to calculate gear position in the Control Center Software. Once gear position is setup you can alter your map based on gear position and setup gear dependent kill times when using a quickshifter.

Analog-


This input is for a 0-5v signal such as engine temp, boost, etc. Once this input is established you can alter your fuel curve based on this input in the control center software.

Crank-

Do **NOT** connect anything to this port unless instructed to do so by Dynojet. It is used to transfer crank trigger data from one module to another.

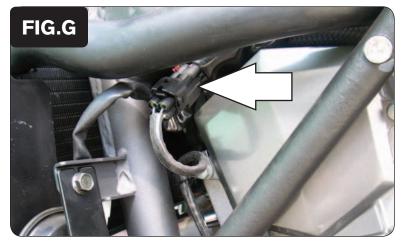


- 1 Remove the seat.
- 2 Prop the front of the fuel tank up.
- 3 Lay the PCV in the frame section above the oil cooler.
- 4 Unplug the stock wiring harness from the throttle body (Fig. A).

5 Connect the PCV wiring harness in-line of the stock wiring harness and fuel injector (Fig. B).

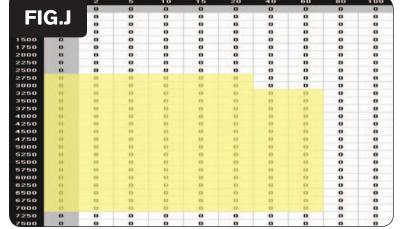
Remove the bolts that hold the MAP sensor to the frame (Fig. C). This is located on the right hand side of the bike.

This allows for easy access to the Throttle Position Sensor.


7 Unplug the Throttle Position Sensor from the throttle body (Fig. D).

- Plug the connectors from the PCV in-line of the stock TPS and wiring harness (Fig. E).
- 9 Reinstall the map sensor to the frame.

- 10 Attach the ground wire of the PCV to the negative side of the battery.
- Install the PCV to the frame using the supplied Velcro. Secure the PCV using the supplied zip tie (Fig. F).
- 12 Bolt the fuel tank back into place making sure it does not pinch the PCV harness.



13 Locate the O2 sensor connection (Fig. G). This is a BLACK 4-pin connector located on the left side of the bike near the cylinder head. Unplug the O2 sensor.

- 14 Connect the O2 Optimizer in-line of the stock wiring harness and O2 sensor.
- 15 Using the supplied Velcro secure the O2 Optimizer to the inside of the left fuel tank cover (Fig. H).

Clean both surfaces with the supplied alcohol swab prior to applying the Velcro.

The O2 Optimizer for this model controls the stock closed loop area. This area is represented by the highlighted cells shown in Figure J. The O2 Optimizer is designed to achieve a target AFR of 13.6:1. To use this O2 Optimizer you must retain your stock O2 sensor (even if using Auto-tune).

It is not necessary to alter the values in the highlighted area. If using the Auto tune system do NOT input values in this area in your Target AFR table.

The O2 Optimizer will blink while the sensor is being heated up. The unit is not functioning until the light is lit up solid.